Attachment 2

Kentucky SEEM Administrative Plan (SEEM)

KENTUCKY SEEM ADMINISTRATIVE PLAN

Kentucky Plan
Version 4.00

Effective Date: March 1, 2011

KENTUCKY
PUBLIC SERVICE COMMISSION

at\&t

Contents Page
Administrative Plan 1
1 - Scope 1
2 - Reporting 1
3 - Review of Measurements and Enforcement Mechanisms 1
4 - Enforcement Mechanisms 2
4.1 - Definitions 2
4.2 - Application 3
4.3 - Methodology 3
4.4 - Payment of Tier-1 Amounts 6
4.5 - Limitations of Liability 7
4.6 - Change of Law 9
4.7 - Enforcement Mechanism Cap 10
4.8 - Audits 10
4.9 - Dispute Resolution 10
4.10 - Regional Coefficients 11
Appendix A: Fee Schedule 12
Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination 12
Appendix B: SEEM Submetrics 13
B. 1 - Tier-1 Submetrics 13
Appendix C: Statistical Properties and Definitions 18
C. 1 - Necessary Properties for a Test Methodology 18
C. 2 - Testing Methodology - The Truncated Z. 20
Appendix D: Statistical Formulas and Technical Descriptions 23
D. 1 - Notation and Exact Testing Distributions 23
D. 2 - Calculating the Truncated Z 26
Appendix E: AT\&T SEEM Remedy Calculation Procedures 37
E. 1 - AT\&T SEEM Remedy Procedure 37
E. 2 - Tier -1 Calculation For Benchmarks 40
E. 3 - Tier-1 Calculation For Benchmarks (In The Form Of A Target) 41
E. 4 - Regional Coefficients 42
KENTUCKYAppendix F: AT\&T's Policy on Reporting of Performance Pu sta and riecarcumationlonSEEM Payments

Administrative Plan

1 Scope

1.1 The Georgia Public Service Commission issued its Order on Motion to Approve Modifications to Performance Measurement Plan on December 13, 2010, and this plan includes the same Self Effectuating Enforcement Mechanisms (SEEM) approved by the Georgia Commission. This SEEM is to be implemented by AT\&T pursuant to orders issued by the Kentucky Public Service Commission (the "Commission") in Docket No. 2004-00391 (dated June 20, 2005) and in Docket No. 2001-00105 (dated May 11, 2004) instructing AT\&T to continue with the Georgia performance plan, along with any future modifications.
1.2 Upon the Effective Date of this Plan, all appendices referred to in this Plan will be located on the AT\&T performance measurement website at http://pmap.wholesale.att.com.

2 Reporting

2.1 In providing services pursuant to the Interconnection Agreements between AT\&T and each CLEC, AT\&T will report its performance to each CLEC in accordance with AT\&T's SQM and pay remedies in accordance with the applicable SEEM, which are posted on the AT\&T performance measurement website.
2.2 Final validated SEEM reports will be posted on the AT\&T performance measurement website on the 15th of the month, following the posting of final validated SQM reports for that data month or the first business day thereafter.
2.3 AT\&T shall retain the performance measurement raw data files for a period of 18 months and further retain the monthly reports for a period of three years.
2.4 AT\&T will provide documentation of late and reposted SQM and SEEM reports during the reporting month that the data is posted to the website.

3 Review of Measurements and Enforcement Mechanisms

3.1 Review of Measurements

A workshop and/or conference shall be organized and held periodically or at the request of either party for the purpose of evaluating the existing remedies and determining whether any remedies should be deleted, modiried or any new repHeques added. Provided however, no new remedies shall be added whichoaseaveadycgaverpesthy existing remedies. A CLEC may actively partiqipate in this Jefiolic werkshap with AT\&T, other CLECs, and state regulatory authority representatives. DIRECTOR
3.1.1 Administrative Changes

AT\&T may make administrative changes that do not substantively change the SEEM Plan. Such changes are excluded from the periodic review process noted above. AT\&T will provide written notice to the Commission regarding all administrative changes. An administrative change is one that corrects typographical, spelling, grammatical, or computational errors, updates website addresses and incorporates modifications to architecture implemented in an OSS release following the approved Change Management process. Administrative changes will not change the intent or the plan language of the document.
3.2 In the event a dispute arises regarding the ordered modification or amendment to the SQM or SEEM, the parties will refer the dispute to the Kentucky Public Service Commission.

4 Enforcement Mechanisms

4.1 Definitions

4.1.1 Enforcement Measurement Elements - performance measurements identified as SEEM measurements within the SEEM Plan.
4.1.2 Enforcement Measurement Benchmark compliance - level of performance established by the Commission used to evaluate the performance of AT\&T for CLECs where no analogous retail process, product or service is feasible.
4.1.3 Enforcement Measurement Retail Analog compliance - comparing performance levels provided to AT\&T retail customers with performance levels provided by AT\&T to the CLEC customer for measures where retail analogs apply.
4.1.4 Test Statistic and Balancing Critical Value - means by which enforcement will be determined using statistical methods. The Test Statistic and Balancing Critical Value are set forth in Appendices C, D, and E of this Plan.
4.1.5 Cell - grouping of transactions at which like-to-like comparisons are made. For example, all AT\&T retail services, for residential customers, requiring a dispatch in a particular wire center, at a particular point in time will be compared directly to CLEC resold services for residential customers, requiring a dispatch, in the same wirooontor, at a cimilar point in timo. Whon, determining compliance, these cels cap have aken fitck Statistic. See Appendices C, D, and E of this Plan fir r. DEROUEN

EXECUTIVE DIRECTOR
4.1.6 Delta, Psi, Epsilon, and Lambda between AT\&T performance and CLEC performanno Finin individual CLECs, the Delta (δ) value shall be 0.5 and for the CL Bunt firtlye Delta value

the CLEC aggregate. The value for Epsilon (ε) will be 2.5 for both individual CLECs and the CLEC aggregate. The value of Lambda (λ) shall be 1 for both individual CLECs and the CLEC aggregate.
4.1.7 Tier-1 Enforcement Mechanisms - self-executing fees paid directly to each CLEC when AT\&T delivers non-compliant performance of any one of the Tier-1 Enforcement Measurement Elements for any month as calculated by AT\&T.
4.1.8 Affiliate - person that (directly or indirectly) owns or controls, is owned or controlled by, or is under common ownership or control with, another person. For purposes of this paragraph, the term "own" means to own an equity interest (or the equivalent thereof) of more than 10 Percent.
4.1.9 Affected Volume - that quantity of the total impacted CLEC volume or CLEC Aggregate volume for which remedies will be paid.
4.1.10 Cell Ranking - placing cells in rank order from highest to lowest, where the cell with the most negative Z-Score is ranked highest and the cell with the least negative Z-Score is ranked lowest.
4.1.11 Cell Correction - method for determining the quantity of transactions to be remedied, referred to as "affected volume," wherein the cell-level Z-Score for the highest ranked cell is first changed to zero ("corrected") and then the next highest, progressively, until the overall level truncated Z-Score is equal to the Balancing Critical Value or zero as required by the Remedy Calculation Procedures. Either all of the transactions in a corrected cell are remedied or a prorated share (determined through interpolation) is remedied.

4.2 Application

4.2.1 The application of the Tier-1 Enforcement Mechanisms does not foreclose other legal and regulatory claims and remedies available to each CLEC.
4.2.2 Payment of any Tier-1 Enforcement Mechanisms shall not be considered as an admission against interest or an admission of liability or culpability in any legal, regulatory or other proceeding relating to AT\&T's performance and the payment of any Tier-1 Enforcement Mechanisms shall not be used as evidence that AT\&T has not complied with or has violated any state or federal law or regulation.

4.3 Methodology

4.3.1 Tier-1 Enforcement Mechanisms achieve applicable Enforcement N Measurement Benchmark for eac given Enforcement Measurement Measurement Compliance is bas

Critical Value calculated by AT\&T utilizing AT\&T generated data. The method of calculation is set forth in Appendices C, D, and E of this Plan.
4.3.1.1 All OCNs and ACNAs for individual CLECs will be consolidated for purposes of calculating transaction-based failures.
4.3.1.2 When a measurement has five or more transactions for the CLEC, calculations will be performed to determine remedies according to the methodology described in the remainder of this document.
4.3.1.3 Tier-1 Enforcement Mechanisms apply on a per transaction basis and will escalate based upon the number of consecutive months that fail for each Enforcement Mechanism Element for which AT\&T has reported non-compliance. Failures beyond Month 6 will be subject to Month 6 fees. All transactions for an individual CLEC will be consolidated for purposes of calculating Tier-1 Enforcement Mechanisms.
4.3.1.4 For submetrics that are assessed based on Enforcement Measurement Retail Analog compliance criteria, the fee paid for a particular submetric that failed at the Tier-1 level will be differentiated based on two criteria. First, the Tier-1 fee paid will be based on whether the same submetric that failed at the Tier-1 level (CLEC-specific) also failed at the CLEC aggregate level in the same month. Second, the Tier-1 fee paid will be based on whether the transactions in the cells to be remedied correct the overall truncated Z-Score from the region below the Balancing Critical Value ("BCV") to the BCV or from the BCV to zero. Depending on which of these criteria apply, a different multiplier will be applied to the Fee Schedule (shown in Appendix A, Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination) to determine the amount of the Tier-1 payments. The chart below shows the applicable multipliers:

CLEC Aggregate Performance	Per Transaction Fee Below BCV	Per Transaction Fee Between BCV and 0
Passes	$(\text { Fee })^{*}(3 / 2)$	$(\text { Fee })^{*}(1 / 3)$
Fails	$(\text { Fee })^{*}(3)$	$(\text { Fee })^{*}(2 / 3)$

No multiplier applies for the Dilling lnvioc Aocurooy meavire.
4.3.1.5 For submetrics that Measurement Benchmark compliank particular submetric that railed at Thet Tielill level will be differentiated based on whether the comn cinnotrin that failed at the Tier-1 level CLEC-specific) also (Sunt firtly $\equiv \mathrm{C}$ aggregate

the Fee Schedule (shown in Appendix A, Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination) to determine the amount of the Tier-1 payments. The chart below shows the applicable multipliers:

CLEC Aggregate Performance	Per Transaction Fee
Passes	$(\text { Fee })^{\star}(3 / 2)$
Fails	$(\text { Fee })^{*}(5 / 2)$ for Ordering and Flow Through $(\text { Fee })^{*}(3)$ for all other benchmark measures

4.3.2 The Market Penetration Adjustments will be applied based on the following provisions to enhance competition for nascent products. In order to ensure parity and benchmark performance where CLECs order low volumes of advanced and nascent services, AT\&T will make additional Tier-1 payments where performance standards for the following measures are not met, if the measurement applies to the nascent service.

- Percent Missed Installation Appointments
- Average Completion Interval
- Missed Repair Appointments
- Maintenance Average Duration
- Average Response Time for Loop Make-up-Response Time-Electronic Information
4.3.2.1 These additional payments will only apply when there are more than 10 and less than 100 average units in service statewide for the preceding three-month period. The additional payments in the form of a market penetration adjustment will be made if AT\&T fails to provide parity for the above measurements as determined by the use of the Truncated Z- test and the balancing critical value or fails to meet the established benchmark.
4.3.2.2 AT\&T shall calculate the new Tier-1 payments, which include the market penetration adjustment by applying the normal method of calculating affected volumes as ordered by the Commission and trebling the normal Tier-1 remedy.
4.3.2.3 If, for the three months of data, there were 100 - 10 boervations-of more on average for the submetric the ef Nodedaitional payments under this market pene ration adjustrment provision win be made.
 24 months have elapsed-since the first unit of fhe nascent serviee was installed.
4.3.2.4 CLECs may file a petition with the Bunt Hirtly frder to add a
service to the list of services for which the market penetration adjustment may apply.
4.3.2.5 Any payments made under this market penetration adjustment provision are subject to the Absolute Cap set by the Commission.
4.3.3 For Tier-1 evaluations, the retail analog or benchmark is the same as for the SQM. See the SQM for SEEM retail analogs and benchmarks.

4.4 Payment of Tier-1 Amounts

4.4.1 If AT\&T performance triggers an obligation to pay Tier-1 Enforcement Mechanisms to a CLEC, AT\&T shall make payment in the required amount on the day upon which the final validated SEEM reports are posted on the AT\&T website as set forth in Section 2.2 above.
4.4.2 For each day after the due date that AT\&T pays a CLEC less than the required Tier-1 remedy, AT\&T will pay the CLEC 6\% simple interest per annum on the difference between the required amount and the amount previously paid. The underpayment and interest will be paid to the CLEC in the next month's payment cycle.
4.4.3 If a CLEC disputes the amount paid for Tier-1 Enforcement Mechanisms, the CLEC shall submit a written claim to AT\&T within sixty (60) days after the payment date. AT\&T shall investigate all claims and provide the CLEC written findings within thirty (30) days after receipt of the claim. If AT\&T determines the CLEC is owed additional amounts, AT\&T shall pay the CLEC such additional amounts within thirty (30) days after its findings along with 6% simple interest per annum.
4.4.4 Any adjustments for underpayment or overpayment of calculated Tier-1 remedies will be made consistent with the terms of AT\&T's Policy On Reposting Of Performance Data and Recalculation of SEEM Payments, as set forth in Appendix F of this document. If any circumstance necessitating remedy adjustments should occur that is not specifically addressed in the Reposting Policy, such adjustments will be made consistent with the terms defined in Paragraph 7 of the Reposting Policy.
4.4.5 Any adjustments for underpaymentoroverpayment will be made in the next month's payment cycle after the month reports will reflect the final paid doilars, incimdingadiustments for prior months where applicable. Questions regardige.theradjustmentsi should be made in accordance with the normal processausechrtacaddress CLEC questions related to SEEM paymerts.
4.4.5.1 If a SEEM overpayment is made to a CLEC, and AT\&T's SEEM liability calculated and payable to that CLEC in the next month's payment cycle is insufficient to offset the amount of overpayment, then within 30 days of AT\&T's request, the CLEC shall repay the amount necessary to satisfy the remaining SEEM overpayment balance. If the CLEC is unable to repay the overpayment at that time, the CLEC may contact AT\&T for payment arrangements.
4.4.6 Where there is a SEEM adjustment, in addition to the submetric, data month(s), and adjustment amount, AT\&T will include an adjustment code on the CLEC specific Tier-1 reports on the AT\&T performance measurement website. Then, on a separate document on the AT\&T performance measurement website, this code will be cross-referenced with a brief narrative description of the adjustment. These codes and descriptions will be applicable to all states where an adjustment was applied. If there are multiple adjustment codes, the code explanation document can be accessed on the AT\&T performance measurement website that will contain all of the codes and the narrative descriptions for each code. An explanation of the cause of the adjustment and the data months impacted by the adjustment will be included in the narrative.

4.5 Limitations of Liability

4.5.1 AT\&T will not be obligated to pay Tier-1 Enforcement Mechanisms for noncompliance with a performance measure if such non-compliance results from a CLEC's acts or omissions that cause failed or missed performance measures. These acts or omissions include but are not limited to, accumulation and submission of orders at unreasonable quantities or times, failure to follow publicly available procedures, or failure to submit accurate orders or inquiries. AT\&T shall provide each CLEC and the Commission with reasonable notice of, and supporting documentation for, such acts or omissions. Each CLEC shall have 10 business days from the filing of such Notice to advise AT\&T and the Commission in writing of its intent to challenge, through the dispute resolution provisions of this plan, the claims made by AT\&T. AT\&T shall not be obligated to pay any amounts subject to such disputes until the dispute is resolved.
4.5.2 AT\&T shall not be obligated to pay Tier-1 Enforcement Mechanisms (SEEM

 indirectly prevented, restricted, or nterfered witanferfonamiodetals measured
 compliance caused by reason of fre, flood, earthâulbkerorlike acts of God, wars, revolution, civil commotion, explosion, ac Bunt firtluy ny, embargo, acts of the government in its sovereign capad
without limitation, strikes, slowdowns, picketing, or boycotts, or any other circumstances beyond the reasonable control and without the fault or negligence of AT\&T. AT\&T, upon giving prompt notice to the Commission and CLECs as provided below, shall be excused from such performance on a day-to-day basis to the extent of such prevention, restriction, or interference; provided, however, that AT\&T shall use diligent efforts to avoid or remove such causes of non-performance.
4.5.2.1 To invoke the application of Section 4.5.2 (Force Majeure Event), AT\&T will provide written notice to the Commission and post notification of such filing on AT\&T's website wherein AT\&T will identify the Force Majeure Event, the affected measures, and, if applicable, the impacted wire centers, including affected NPAs and NXXs.
4.5.2.2 No later than ten (10) business days after AT\&T provides written notice in accordance with Section 4.5.2.1 affected CLECs must file written comments with the Commission to the extent such CLECs have objections or concerns regarding the application of Section 4.5.2. CLECs will be required to show that the relief is not reasonable under the circumstances.
4.5.2.3 AT\&T's written notice of the applicability of Section 4.5.2 shall be presumptively valid and deemed approved by the Commission effective thirty (30) calendar days after AT\&T provides notice in accordance with Section 4.5.2.1. The Commission may require AT\&T to provide a true-up of SEEM fees to affected CLECs if a Force Majeure Event declaration (or some portion thereof) is found to be invalid by the Commission after it has taken effect.
4.5.2.4 During the pendency of a Force Majeure Event, AT\&T shall file with the Commission periodic updates of its restoration/recovery progress and efforts as agreed upon between the Commission Staff and AT\&T. The Commission Staff will consider reasonable requests from affected carriers on such updates' contents and frequency, including the need for weekly progress update reports. Additionally, for Force Majeure events directly impacting a geographic area of the network infrastructure, AT\&T will post to

service orders; the total number of CLEC pending service orders; the total number of AT\&T pending trouble reports; and the total number of CLEC pending trouble reports.
4.5.2.5 The Force Majeure claim will be presumptively valid for a period of sixty (60) calendar days. After sixty (60) calendar days have elapsed, AT\&T shall resume compliance with the Enforcement Mechanisms or file for an extension of the relief period. To the extent CLECs have objections or concerns regarding the extension, CLECs must file written comments with the Commission within ten (10) business days from the request of the extension. CLECs will be required to show that the extended period was not reasonable under the circumstances. AT\&T's request for extension shall be presumptively valid and deemed approved by the Commission effective thirty (30) calendar days after AT\&T provides notice in accordance with Section 4.5.2.1. The Commission may require AT\&T to provide a true-up of SEEM payments to affected CLECs if a Force Majeure Event (or some portion thereof) is found to be invalid by the Commission after it has taken effect.
4.5.3 In addition to these specific limitations of liability, AT\&T may petition the Commission to consider relief based upon other circumstances.

4.6 Change of Law

4.6.1 Upon a particular Commission's issuance of an Order pertaining to Performance Measurements or Remedy Plans in a proceeding expressly applicable to all CLECs, AT\&T shall implement such performance measures and remedy plans covering its performance for the CLECs, as well as any changes to those plans ordered by the Commission, on the date specified by the Commission. If a change of law occurs which may change AT\&T's obligations, parties may petition the Commission within 30 days to seek changes to the SQM and SEEM plans in accordance with such change of law. Performance Measurements and remedy plans that have been ordered by the Commission can currently be accessed via the AT\&T performance measurement website. Should there be any difference between the performance measure and remedy plans on AT\&T's website and the plans the Commission has approved as filed in compliamue with its orders, the Commission-approved compliance plan pwiblisugelside asinahissieffective date.

JEFF R. DEROUEN
EXECUTIVE DIRECTOR
TARIFF BRANCH
Bunt Fitly
EFFECTIVE
3/1/2011
PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

4.7 Enforcement Mechanism Cap

4.7.1 AT\&T's total liability for the payment of Tier-1 Enforcement Mechanisms shall be collectively and absolutely capped at 36% of net revenues in Kentucky, based upon the most recently reported ARMIS data.
4.7.2 If projected payments exceed the state cap, a proportional payment will be made to the respective parties.
4.7.3 If AT\&T's payment of Tier-1 Enforcement Mechanisms would have exceeded the cap referenced in this plan, a CLEC may commence a proceeding with the Commission to demonstrate why AT\&T should pay any amount in excess of the cap. The CLEC shall have the burden of proof to demonstrate why, under the circumstances, AT\&T should have additional liability.
4.8 Audits
4.8.1 AT\&T currently provides CLECs with certain audit rights as a part of their individual interconnection agreements. If ordered by the Public Service Commission, AT\&T will agree to undergo a SEEM audit. Unless otherwise agreed between AT\&T and the Public Service Commission, the audit should be conducted by an independent third party auditor. The results of audits will be made available to all the parties subject to proper safeguards to protect proprietary information. Audits will be conducted under the following specifications:
4.8.1.1 The cost of one audit per version of the SEEM plan shall be borne by AT\&T.
4.8.1.2 Should an independent third party auditor be required, it shall be selected by AT\&T and the PSC.
4.8.1.3 AT\&T and the PSC shall jointly determine the scope of the audit.
4.8.1.4 The PSC may request input regarding selection of the auditor from interested parties.
4.8.2 These audits are intended to provide the basis for the PSCs and CLECs to determine that SEEM produces accurate data that reflect each State's Order for performance measurements.

4.9 Dispute Resolution

4.9.1 Notwithstanding any other provision PUBLIC SERVICE COMMISSION between AT\&T performance or obligations pursua to this Plan,TAFI\&TBandethe CLEC shall negotiate in good faith for a period of thirty (3 C , \rightleftharpoons the dispute. If at the conclusion of the 30 day period, AT\&7 (Sunt Rirlly fare unable to
reach a resolution, then the dispute shall be resolved by the Commission.

4.10 Regional Coefficients

Some metrics are calculated for the entire AT\&T Southeast region, rather than by state. Where these metrics are a Tier-1 SEEM submetric, a regional coefficient is calculated to determine the amount of the remedy for the CLEC in each state. For example, the Acknowledgement Completeness Measurement can be measured for an individual CLEC, but only at the regional level. In several states it is also a Tier-1 SEEM submetric. Thus, if there is a failure in this measurement for a CLEC, it is necessary to determine the amount of remedy for the CLEC in each state. A Regional Coefficient is used to do this. (Appendix E, Section E. 4 describes the method of calculating the Regional Coefficients.) The amount of remedy for the CLEC in a state is determined by multiplying the regional affected volume by the Coefficient for the state and by the state fee.

Appendix A: Fee Schedule

Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination

Performance Measure	Month $\mathbf{1}$	Month $\mathbf{2}$	Month $\mathbf{3}$	Month $\mathbf{4}$	Month $\mathbf{5}$	Month $\mathbf{6}$
OSS/Pre-Ordering	$\$ 10.00$	$\$ 15.00$	$\$ 24.00$	$\$ 30.00$	$\$ 6.00$	$\$ 42.00$
Service Order Accuracy	$\$ 20.00$	$\$ 20.00$	$\$ 24.00$	$\$ 24.00$	$\$ 24.00$	$\$ 24.00$
Flow Through - Business	$\$ 40.00$	$\$ 45.00$	$\$ 60.00$	$\$ 66.00$	$\$ 72.00$	$\$ 78.00$
Flow Through - LNP	$\$ 40.00$	$\$ 45.00$	$\$ 67.50$	$\$ 74.25$	$\$ 81.00$	$\$ 87.75$
Flow Through - Residence	$\$ 40.00$	$\$ 45.00$	$\$ 67.50$	$\$ 74.25$	$\$ 81.00$	$\$ 87.75$
Flow Through - UNE-L	$\$ 40.00$	$\$ 45.00$	$\$ 60.00$	$\$ 66.00$	$\$ 72.00$	$\$ 78.00$
FOCT - Fully Mechanized	$\$ 20.00$	$\$ 25.00$	$\$ 36.00$	$\$ 42.00$	$\$ 48.00$	$\$ 54.00$
FOCT - Partially Mechanized	$\$ 20.00$	$\$ 25.00$	$\$ 40.50$	$\$ 47.25$	$\$ 54.00$	$\$ 60.75$
FOCT - Email	$\$ 20.00$	$\$ 25.00$	$\$ 36.00$	$\$ 42.00$	$\$ 48.00$	$\$ 54.00$
FOCT - IC Trunks	$\$ 20.00$	$\$ 25.00$	$\$ 36.00$	$\$ 42.00$	$\$ 48.00$	$\$ 54.00$
Ordering - All Other Metrics	$\$ 20.00$	$\$ 25.00$	$\$ 36.00$	$\$ 42.00$	$\$ 48.00$	$\$ 54.00$
Provisioning - Resale	$\$ 40.00$	$\$ 50.00$	$\$ 84.00$	$\$ 120.00$	$\$ 156.00$	$\$ 240.00$
Provisioning - UNE	$\$ 115.00$	$\$ 130.00$	$\$ 174.00$	$\$ 192.00$	$\$ 228.00$	$\$ 276.00$
Provisioning - UNEP	$\$ 55.00$	$\$ 60.00$	$\$ 84.00$	$\$ 90.00$	$\$ 108.00$	$\$ 132.00$
Provisioning - IC Trunks	$\$ 25.00$	$\$ 30.00$	$\$ 60.75$	$\$ 87.75$	$\$ 108.00$	$\$ 168.75$
Provisioning - LNP	$\$ 115.00$	$\$ 190.00$	$\$ 462.00$	$\$ 552.00$	$\$ 642.00$	$\$ 738.00$
Maintenance and Repair - Resale	$\$ 40.00$	$\$ 50.00$	$\$ 84.00$	$\$ 120.00$	$\$ 156.00$	$\$ 240.00$
Maintenance and Repair - UNE	$\$ 115.00$	$\$ 130.00$	$\$ 174.00$	$\$ 192.00$	$\$ 228.00$	$\$ 276.00$
Maintenance and Repair - UNEP	$\$ 55.00$	$\$ 60.00$	$\$ 84.00$	$\$ 90.00$	$\$ 108.00$	$\$ 132.00$
Maintenance and Repair - IC Trunks	$\$ 25.00$	$\$ 30.00$	$\$ 54.00$	$\$ 78.00$	$\$ 96.00$	$\$ 150.00$
Billing- BIA (see Note						
1)						

Appendix B: SEEM Submetrics

B. 1 Tier-1 Submetrics

Item No.	$\begin{gathered} \text { SQM } \\ \text { Ref } \end{gathered}$	Tier-1 Submetric	
1	LMT	PO-2 Loop Makeup - Response Time - Electronic - Loop	
2	AKC	O-2 Acknowledgement Message Completeness - Acknowledgments	
3	FT	O-3 Percent Flow-Through Service Requests - Business	
4	FT	O-3 Percent Flow-Through Service Requests - LNP	
5	FT	O-3 Percent Flow-Through Service Requests - Residence	
6	FT	O-3 Percent Flow-Through Service Requests - UNE-L (includes UNE-L with LNP)	
7	FT	O-3 Percent Flow-Through Service Requests - UNE-P	
8	RI	O-8 Reject Interval - Fully Mechanized	
9	RI	O-8 Reject Interval - Partially Mechanized	
10	RI	O-8 Reject Interval - Email	
11	FOCT	O-9 Firm Order Confirmation Timeliness - Fully Mechanized	
12	FOCT	O-9 Firm Order Confirmation Timeliness - Partially Mechanized	
13	FOCT	O-9 Firm Order Confirmation Timeliness - Email	
14	FOCT	O-9 Firm Order Confirmation Timeliness - Local Interconnection Trunks	
15	FOCC	O-11 FOC \& Reject Response Completeness - Fully Mechanized	
16	FOCC	O-11 FOC \& Reject Response Completeness - Partially Mechanized	
17	FOCC	O-11 FOC \& Reject Response Completeness - Email	
18	MIA	P-3 Percent Missed Installation Appointmen s - Resale POTKERNTUCKY	
19	MIA	P-3 Percent Missed Installation Appointmen s - Resale Dbefrn R. DEROUEN	
20	MIA	P-3 Percent Missed Installation Appointmen Combinations	s - UNE Loop anded PertikANCH
21	MIA	P-3 Percent Missed Installation Appointmen	s-uneLodrunt firluy EFFEGTIVE
		13	$3 / 1 / 2011$ PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

at\&t

Item No.	$\begin{gathered} \hline \text { SQM } \\ \text { Ref } \end{gathered}$	Tier-1 Submetric	
47	PPT	P-9 Provisioning Trouble Rate - UNE xDSL and Line Splitting	
48	PPT	P-9 Provisioning Trouble Rate - UNE Line Sharing - Dispatch	
49	PPT	P-9 Provisioning Trouble Rate - UNE Line Sharing - Non-Dispatch	
50	PPT	P-9 Provisioning Trouble Rate - Local Interconnection Trunks	
51	SOA	P-11 Service Order Accuracy	
52	LOOS	P-13B LNP - Percent Out of Service < 60 Minutes - LNP	
53	LAT	P-13C LNP Percent of Time AT\&T Applies the 10-Digit Trigger Prior to the LNP Order Due Date - LNP - (Standalone)	
54	LDT	P-13D LNP - Disconnect Timeliness (Non-Trigger)	
55	MRA	MR-1 Percent Missed Repair Appointment - Resale POTS	
56	MRA	MR-1 Percent Missed Repair Appointment - Resale Design	
57	MRA	MR-1 Percent Missed Repair Appointment - UNE Loop and Port Combinations	
58	MRA	MR-1 Percent Missed Repair Appointment - UNE Loops Design	
59	MRA	MR-1 Percent Missed Repair Appointment - UNE EELS	
60	MRA	MR-1 Percent Missed Repair Appointment - UNE Loops Non-Design	
61	MRA	MR-1 Percent Missed Repair Appointment - UNE xDSL and Line Splitting	
62	MRA	MR-1 Percent Missed Repair Appointment - UNE Line Sharing	
63	MRA	MR-1 Percent Missed Repair Appointment - Local Interconnection Trunks	
64	CTRR NPRR	MR-2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - Resale POTS	
65	CTRR NPRR	MR-2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - Resale Design	
66	CTRRNPRR	MR-2A Customer Trouble Report Rate Net of Provisioning Troubles and Repeat Reports - UNE Loop and Port Combinations	
67	CTRRNPRR	MR-2A Customer Trouble Report Rate Net Repeat Reports - UNE Loops Design	of Provisioning Trbumbld PUBLIC SERVICE COMMIS
68	CTRR NPRR	MR-2A Customer Trouble Report Rate Net Repeat Reports - UNE Loops Non-Design	
69	CTRRNPRR	MR-2A Customer Trouble Report Rate Net of Provisionin. Bunt HirtlyyRepeat Reports - UNE xDSL and Line Spliting	
		15	EFFECTIVE 3/1/2011 PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

at\&t

Appendix B: SEEM Submetrics

Item No.	SQM Ref	Tier-1 Submetric
92	COS	MR-5 Out of Service (OOS) > 24 hours - UNE Loops Design
93	ODS	MR-5 Out of Service (OOS) > 24 hours - UNE Loops Non-Design
94	ODS	MR-5 Out of Service $($ OOS $)>24$ hours - UNE xDSL and Line Splitting
95	COS	MR-5 Out of Service (OOS) >24 hours - UNE Line Sharing
96	COS	MR-5 Out of Service (OOS) > 24 hours - Local Interconnection Trunks
97	BIA	B-1 Invoice Accuracy
98	BIT	B-2 Mean Time to Deliver Invoices - CRIS
99	BIT	B-2 Mean Time to Deliver Invoices - CABS
100	BUDT	B-5 Usage Data Delivery Timeliness
101	BEG	B-10 Percent Billing Adjustment Requests (BAR) Responded to within 45 Business Days - State
102	TGP	TGP Trunk Group Performance
103	MDD	C-3 Collocation Percent of Due Dates Missed

KENTUCKY
PUBLIC SERVICE COMMISSION

Appendix C: Statistical Properties and Definitions

The statistical process for testing whether AT\&T's wholesale customers (Competitive Local Exchange Carriers or CLECs) are being treated equally with AT\&T's retail customers involves more than a simple mathematical formula. Three key elements need to be considered before an appropriate decision process can be developed. These are the type of:

- Data
- Comparison
- Performance

This section describes the properties of a test methodology and the truncated Z statistic for three types of measures that compare CLEC's performance to AT\&T's retail analog.

C. 1 Necessary Properties for a Test Methodology

Once the key elements are determined, a test methodology should be developed that complies with the following properties:

- Like-to-Like Comparisons
- Overall Level Test Statistic
- Production Mode Process
- Balancing

C.1.1 Like-to-Like Comparisons

When possible, data should be compared at appropriate levels, e.g. wire center, time of month, dispatched residential, new orders. The testing process should:

- Identify variables that may affect the performance measure
- Record these important confounding covariates
- Adjust for the observed covariates in order to remove potential biases and to make the CLEC and the ILEC units as comparable as possible

C.1.2 Overall Level Test Statistic

 statistic giving the decision maker a rule that determines yetatherotanetatiptically significant difference exists. The test statistic should have the fo \#\&whidptoperties.OR

- If entries in comparison cells are exadtly proportio. Runt firtley ate, the aggregated index should be very neatly the same Sumt fincly ins on the covariate had not been done.
- The contribution of each comparison cell should depend on the number of observations in the cell.
- Cancellation between comparison cells should be limited.
- The index should be a continuous function of the observations.

C.1.3 Production Mode Process

The decision system must be developed so that it does not require intermediate manual intervention, i.e., the process must be mechanized to the extent possible.

- Calculations are well defined for possible eventualities.
- The decision process is an algorithm that needs no manual intervention.
- Results should be arrived at in a timely manner.
- The system must recognize that resources are needed for other performance measure-related processes that also must be run in a timely manner.
- The system should be auditable and adjustable over time.

C.1.4 Balancing

The testing methodology should balance Type I and Type II Error probabilities.

- \quad (Type I Error) = P (Type II Error) for well-defined null and alternative hypotheses.
- The formula for a test's balancing critical value should be simple enough to calculate using standard mathematical functions, i.e., one should avoid methods that require computationally intensive techniques.
- Little to no information beyond the null hypothesis, the alternative hypothesis, and the number of observations should be required for calculating the balancing critical value.

C.1.5 Measurement Types

The performance measurements that will undergo testing are of three types: mean, proportion, and rate. All three have similar characteristics. Different types of data are used to calculate them. Table C-1 shows the type of data that is used to derive each measurement type.

Table C-1: Measurement Types and Data

Measurement Type	Data Used to Derive Measure	
Mean	Interval Measuremegrtsc SERVICE COMMISSION	
Proportion	JEFF R. DEROUEN	
Rate		

at\&t

Appendix C: Statistical Properties and Definitions

C. 2 Testing Methodology - The Truncated Z

In summary, many covariates are chosen in order to provide meaningful comparison levels below the submetric level chosen for the parity comparison. This includes such factors as wire center and time of month, as well as order type for provisioning measures. In each comparison cell, a Z statistic is calculated. The form of the Z statistic may vary depending on the performance measure, but it should be distributed approximately as a standard normal, with mean zero and variance equal to one. Assuming that the test statistic is derived so that it is negative when the performance for the CLEC is worse than for the ILEC, a positive truncation is done - i.e. if the result is negative it is left alone, if the result is positive it is changed to zero. A weighted average of the truncated statistics is calculated where a cell's weight depends on the volume of AT\&T and CLEC orders in the cell. The weighted average is standardized by subtracting the weighted theoretical mean of the truncated distribution, and this is divided by the standard error of the weighted average. Summaries based on measurement type are given for the calculation of the cell Z statistic.

Additionally, there are measures that are compared to a retail analog at least in part where cell definitions do not exist that permit assignment of data for these measures to cells so the truncated Z statistic cannot be calculated. These measures are:

- Average Answer Time (M\&R)
- Billing Invoice Accuracy
- Mean Time to Deliver Invoices

In addition, there is one measurement that uses retail results 'plus' (2 seconds for OSS Response Time); resulting in a benchmark standard. This measurement is OSS Response Interval (Pre-Ordering/Ordering/Maintenance \& Repair.

As an example of one approach taken for a parity measure that does not use the truncated Z methodology, consider the measure Billing Invoice Accuracy. In Kentucky, AT\&T calculates results for this measure by subtracting the Absolute Value of Total Adjustments during the current month from the Absolute Value of Total Billed Revenues during the current month then dividing these results by the Absolute Value of Total Billed Revenues during the current month and multiplying these results by 100. The formula is as follows:

Invoice Accuracy = [(a-b)/a] 100
$\mathbf{a}=$ Absolute Value of Total Billed Revenues during current month
$\mathbf{b}=$ Absolute Value of Total Billing Related Adjustments during kurrentcknin
A numerical example of the remedy calculation is givenPbemblu SERVICE COMMISSION Example:
CLEC DATA
Bill Adjustments
\$14,660.00
Total Billed Revenue

JEFF R. DEROUEN
EXECUTIVE DIRECTOR

AT\&T DATA
Bill Adjustments
\$6,018,969,26
Total Billed Revenue $\quad \$ 484,691,922.40$
CLEC Invoice Accuracy Ratio $=[(336,529.00-14,660.00) / 336,529.00] \times 100=95.64$
AT\&T Invoice Accuracy Ratio =

$$
[(484,691,922.40-6,018,969.26) / 484,691,922.40] \times 100=98.75
$$

Thus, the calculated values are:
CLEC Result = 96\%
AT\&T Result = 98.75\%
In Kentucky once it is determined that the AT\&T percent is higher, AT\&T pays the CLEC according to the Kentucky Fee Schedule.

The calculation would be the difference in the CLEC Invoice Accuracy Ratio and the AT\&T Invoice Accuracy Ratio multiplied by the total CLEC Bill Adjustments. Then multiply the result by 2% (Appendix A: Fee Schedule)

- 98.75\%-95.64\%=3.11\%
- 3.11% x $\$ 14,660=\$ 455.92$
- $\$ 455.92 \times 2 \%=\$ 9.12$

C.2.1 Mean Measures

For mean measures, an adjusted, modified t statistic is calculated for each like-to-like cell that has at least seven AT\&T and seven CLEC transactions. A permutation test is used when one or both of the AT\&T and CLEC sample sizes is less than seven. The adjusted, modified t statistic and the permutation calculation are described in Appendix D, Statistical Formulas and Technical Description.

C.2.2 Proportion Measures

For performance measures that are calculated as a proportion, in each adjustment cell, the cell Z and the moments for the truncated cell Z can be calculated in a direct manner. In adjustment cells where proportions are not equal to zero -one, and where the sample sizes are reasonably large ($n_{i j} p_{\mathrm{ij}}\left(1-p_{\mathrm{ij}}\right)>9$), a normalaproxith In this case, the moments for the truncated Z come directly from properties of the standard normal distribution. If the normal approximation is not xppopariatep doenothe Z statistic is calculated from the hypergeometric distribution. In this casisfthemaments of the truncated Z are calculated exactly using the hype geometric f

EFFECTIVE

C.2.3 Rate Measures

The truncated Z methodology for rate measures has the same general structure for calculating the Z in each cell as proportion measures. For the rate measure Customer Trouble Report Rate there is a fixed number of access lines in service for the CLEC, $\mathrm{b}_{2 \mathrm{j}}$, and a fixed number for AT\&T, $\mathrm{b}_{1 \mathrm{j}}$. The modeling assumption is that the occurrence of a trouble is independent between access lines, and the number of troubles in b access lines follows a Poisson distribution with mean $\lambda \cdot b$ where λ is the probability of a trouble per 1 access line and $b\left(=b_{1 j}+b_{2 j}\right)$ is the total number of access lines in service. The exact permutation distribution for this situation is approximated by the binomial distribution (the limit for the hypergeometric distribution) that is based on the total number of AT\&T and CLEC troubles, n, and the proportion of AT\&T access lines in service, $a_{j}=b_{1 j} / b$.

In an adjustment cell, if the number of CLEC troubles is greater than 15 and the number of $A T \& T$ troubles is greater than 15 , and $n_{j} q_{j}\left(1-q_{j}\right)>9$, then a normal approximation can be used. In this case, the moments of the truncated Z come directly from properties of the standard normal distribution. Otherwise, if there are very few troubles, the number of CLEC troubles can be modeled using a binomial distribution with n equal to the total number of troubles (CLEC plus AT\&T troubles). In this case, the moments for the truncated Z are calculated explicitly using the binomial distribution.

Appendix D: Statistical Formulas and Technical Descriptions

We start by assuming that the data are disaggregated so that comparisons of CLEC's performance to AT\&T's retail analog are made within appropriate classes or adjustment cells that define "like" observations.

D. 1 Notation and Exact Testing Distributions

Below, we have detailed the basic notation for the construction of the truncated Z statistic. In what follows the word "cell" should be taken to mean a like-to-like comparison cell that has both at least one ILEC observation and at least one CLEC observation.

$$
\left.\begin{array}{ll}
\mathrm{L}= & \text { the total number of occupied cells } \\
\mathrm{j}= & 1, \ldots, \mathrm{~L} \text {; an index for the cells } \\
\mathrm{n}_{1 \mathrm{j}}= & \text { the number of ILEC transactions in cell } \mathrm{j} \\
\mathrm{n}_{2 \mathrm{j}}= & \text { the number of CLEC transactions in cell } \mathrm{j}
\end{array}\right] \begin{array}{ll}
\mathrm{n}_{\mathrm{j}}= & \text { the total number transactions in cell } \mathrm{j} ; \mathrm{n}_{1 \mathrm{j}}+\mathrm{n}_{2 \mathrm{j}}
\end{array} \mathrm{X}_{\mathrm{ijk}}=\quad \text { Individual ILEC transactions in cell } \mathrm{j} ; \mathrm{k}=1, \ldots, \mathrm{n}_{1 \mathrm{j}} .
$$

For Mean Performance Measures the following additional notatiokisinterderd.

$$
\begin{aligned}
\bar{X}_{2 j} & =\text { The CLEC sample mean of cell } \mathrm{j} \\
\mathrm{~s}_{1 \mathrm{j}}^{2} & =\text { The ILEC sample variance in cell } \mathrm{j} \\
\mathrm{~s}_{2 \mathrm{j}}^{2} \quad= & \text { The CLEC sample variance in cell } \mathrm{j} \\
\left\{\mathrm{y}_{\mathrm{jk}}\right\} \quad= & \text { a random sample of size } \mathrm{n}_{2 \mathrm{j}} \text { from the set of } Y_{\mathrm{j} 1}, \ldots, \mathrm{Y}_{\mathrm{jn}}^{\mathrm{j}} \mathrm{j}
\end{aligned} \mathrm{k}=
$$

The exact parity test is the permutation test based on the "modified Z" statistic. For large samples, one can avoid permutation calculations since this statistic will be normal (or Student's t) to a good approximation. For small samples, where one cannot avoid permutation calculations, it has been determined that the difference between "modified Z " and the textbook "pooled Z " is negligible. Therefore the permutation test based on pooled Z for small samples will be used. This decision speeds up the permutation computations considerably, because for each permutation we need only compute the sum of the CLEC sample values, and not the pooled statistic itself.
A permutation probability mass function distribution for cell j, based on the "pooled Z" can be written as

$$
\mathrm{PM}(\mathrm{t})=\mathrm{P}\left(\sum_{\mathrm{k}} \mathrm{y}_{\mathrm{jk}}=\mathrm{t}\right)=\frac{\text { the number of samples that sum to } \mathrm{t}}{\mathrm{M}_{\mathrm{j}}}
$$

and the corresponding cumulative permutation distribution is

$$
\operatorname{CPM}(\mathrm{t})=\mathrm{P}\left(\sum_{\mathrm{k}} \mathrm{y}_{\mathrm{jk}} \leq \mathrm{t}\right)=\frac{\text { the number of samples with sum } \leq \mathrm{t}}{\mathrm{M}_{\mathrm{j}}}
$$

For Proportion Performance Measures the followi	KENTUCKY PUBLIC SERVICE COMMISSION
	hg notation isEdefine EXECUTVE DIRECTOR
	TARIFF BRANCH
$\mathrm{a}_{1 j}=\quad$ The number of ILEC cases possessing an cell j	attribute of in Suut Histley
	EFFECTIVE
24	$3 / 1 / 2011$ PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

Appendix D: Statistical Formulas and Technical Descriptions

$a_{2 j}=\quad$ The number of CLEC cases possessing an attribute of interest in cell j
$a_{j}=\quad$ The number of cases possessing an attribute of interest in cell j; $a_{1 j}+a_{2 j}$

The exact distribution for a parity test is the hypergeometric distribution. The hypergeometric probability mass function distribution for cell j is

$$
H G(h)=P(H=h)=\left\{\begin{array}{c}
\binom{n_{1 j}}{h}\binom{n_{2 j}}{a_{j}-h} \\
\binom{n_{j}}{a_{j}}
\end{array}, \max \left(0, a_{j}-n_{2 j}\right) \leq h \leq \min \left(a_{j}, n_{1 j}\right)\right.
$$

and the cumulative hypergeometric distribution is

$$
\operatorname{CHG}(x)=P(H \leq x)=\left\{\begin{array}{cl}
0 & x<\max \left(0, a_{j}-n_{2 j}\right) \\
\sum_{h=\max \left(0, \mathrm{a}_{\mathrm{j}}-\mathrm{n}_{\mathrm{ij}}\right)}^{\mathrm{x}} \operatorname{HG}(\mathrm{~h}), & \max \left(0, \mathrm{a}_{\mathrm{j}}-\mathrm{n}_{2 \mathrm{j}}\right) \leq \mathrm{x} \leq \min \left(\mathrm{a}_{\mathrm{j}}, \mathrm{n}_{1 \mathrm{j}}\right) \\
1 & x>\min \left(\mathrm{a}_{\mathrm{j}}, \mathrm{n}_{1 \mathrm{j}}\right)
\end{array}\right.
$$

For Rate Performance Measures, the notation needed is defined as:

$$
\begin{array}{ll}
\mathrm{b}_{1 \mathrm{j}} & =\text { the number of ILEC base elements in cell } \mathrm{j} \\
\mathrm{~b}_{2 \mathrm{j}} & =\text { the number of CLEC base elements in cell } \mathrm{j} \\
\mathrm{~b}_{\mathrm{j}} & =\text { the total number of base elements in cell } \mathrm{j} ; \mathrm{b}_{1 \mathrm{j}}+\mathrm{b}_{2 \mathrm{j}} \\
\mathrm{r}_{1 \mathrm{j}} & =\text { the ILEC sample rate of cell } \mathrm{j} ; \mathrm{n}_{1 \mathrm{j}} / \mathrm{b}_{1 \mathrm{j}} \\
\mathrm{r}_{2 \mathrm{j}} & =\text { the ILEC sample rate of cell } \mathrm{j} ; \mathrm{n}_{2 \mathrm{j}} / \mathrm{b}_{2 \mathrm{j}} \\
\mathrm{q}_{\mathrm{j}} & =\text { the relative proportion of ILEC elements for cell } \mathrm{j} ; \mathrm{b}_{1 \mathrm{j}} / \mathrm{b}_{\mathrm{j}}
\end{array}
$$

The exact distribution for a parity test is the binomial distribution. The binomial probability mass function distribution for cell j is:

$$
\mathrm{BN}(\mathrm{k})=\mathrm{P}(\mathrm{~B}=\mathrm{k})=\left\{\begin{array}{c}
\binom{\mathrm{n}_{\mathrm{j}}}{\mathrm{k}} \mathrm{q}_{\mathrm{j}}^{\mathrm{k}}\left(1-\mathrm{q}_{\mathrm{j}}\right)^{\mathrm{n}_{\mathrm{j}}-\mathrm{k}} \\
0
\end{array}\right.
$$

and the cumulative binomial distribution is

KENTUCKY PUBLIC SERVICE COMMISSION
$0 \leq \mathrm{k} \leq \mathrm{n}_{\mathrm{j}}$ JEFF R. DEROUEN jEXECUTIVE DIRECTOR
TARIFF BRANCH otherwise Bunt Hirtley
EFFECTIVE 3/1/2011 PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

$$
\mathrm{CBN}(x)=P(B \leq x)=\left\{\begin{array}{cl}
0 & x<0 \\
\sum_{k=0}^{x} B N(k), & 0 \leq x \leq n_{j} \\
1 & x>n_{j}
\end{array}\right.
$$

D. 2 Calculating the Truncated Z

The general methodology for calculating an overall level test statistic is outlined below.

D.2.1 Calculate Cell Weights (W_{j})

A weight based on the number of transactions is used so that a cell, which has a larger number of transactions, has a larger weight. The actual weight formula will depend on the type of measure.

Mean Measure

$$
\mathrm{W}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}}}{\mathrm{n}_{\mathrm{j}}}}
$$

Proportion Measure

$$
\mathrm{W}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{2 \mathrm{j}} \mathrm{n}_{1 \mathrm{j}}}{\mathrm{n}_{\mathrm{j}}} \cdot \frac{\mathrm{a}_{\mathrm{j}}}{\mathrm{n}_{\mathrm{j}}} \cdot\left(1-\frac{\mathrm{a}_{\mathrm{j}}}{\mathrm{n}_{\mathrm{j}}}\right)}
$$

Rate Measures

$$
W_{j}=\sqrt{\frac{b_{1 j} b_{2 j}}{b_{j}} \cdot \frac{n_{j}}{b_{j}}}
$$

D.2.2 Calculate a Z-Score (Z_{i}) for each Cell

$A Z$ statistic with mean 0 and variance 1 is needed for each cell.

- If $W_{j}=0$, set $Z_{j}=0$.
- Otherwise, the actual Z statistic calcu anion depends RENTUCGE of performance measure.

Mean Measure

$$
\mathrm{Z}_{\mathrm{j}}=\Phi^{-1}(\alpha)
$$

Bunt firstly
where α is determined by the following algorithm.
If the two means are equal and the two variances are zero, set the cell Z-Score to zero.
If $\min \left(n_{1 j}, n_{2 j}\right)>6$, then determine α as

$$
\alpha=P\left(\mathrm{t}_{\mathrm{n}_{1 \mathrm{j}}-1} \leq \mathrm{T}_{\mathrm{j}}\right)
$$

that is, α is the probability that a Student's t random variable with $n_{1 j}-1$ degrees of freedom, is less than

$$
T_{j}= \begin{cases}t_{j}+\frac{g}{6}\left(\frac{n_{1 j}+2 n_{2 j}}{\sqrt{n_{1 j} n_{2 j}\left(n_{1 j}+n_{2 j}\right)}}\right)\left(t_{j}^{2}+\frac{n_{2 j}-n_{1 j}}{n_{1 j}+2 n_{2 j}}\right) & t_{j} \geq t_{\min j} \\ t_{j}+\frac{g}{6}\left(\frac{n_{1 j}+2 n_{2 j}}{\sqrt{n_{1 j} n_{2 j}\left(n_{1 j}+n_{2 j}\right)}}\right)\left(t_{\min j}^{2}+\frac{n_{2 j}-n_{1 j}}{n_{1 j}+2 n_{2 j}}\right) & \text { otherwise }\end{cases}
$$

where

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{j}}=\frac{\overline{\mathrm{X}}_{1 \mathrm{j}}-\overline{\mathrm{X}}_{2 \mathrm{j}}}{\mathrm{~s}_{1 \mathrm{j}} \sqrt{\frac{1}{\mathrm{n}_{1 \mathrm{j}}}+\frac{1}{n_{2 \mathrm{j}}}}} \\
& \mathrm{t}_{\min \mathrm{j}}=\frac{-3 \sqrt{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{n}_{\mathrm{j}}}}{g\left(\mathrm{n}_{1 \mathrm{j}}+2 \mathrm{n}_{2 \mathrm{j}}\right)}
\end{aligned}
$$

and g is the median value of all values of

$$
\gamma_{1 \mathrm{j}}=\frac{\mathrm{n}_{1 \mathrm{j}}}{\left(\mathrm{n}_{1 \mathrm{j}}-1\right)\left(\mathrm{n}_{1 \mathrm{j}}-2\right)} \sum_{\mathrm{k}}\left(\frac{\mathrm{X}_{1 \mathrm{jk}}-\overline{\mathrm{X}}_{1 \mathrm{j}}}{\mathrm{~s}_{1 \mathrm{j}}}\right)^{3}
$$

over all cells within the submeasure being tested such that all three conditions stated below are true.
of

$$
\begin{aligned}
& \gamma_{1 j}>0 \\
& n_{1 j}>6 \\
& n_{1 j} \geq n_{3 q}
\end{aligned}
$$

If no submeasure cells exist that satisfy these cor ditions, the

Note, that t_{j} is the "modified Z " statistic. The statistic T_{j} is a "modified Z " adjusted for the skewness of the ILEC data.
If $\min \left(\mathrm{n}_{1 \mathrm{j}}, \mathrm{n}_{2 \mathrm{j}}\right) \leq 6$, and

- $M_{j} \leq 1,000$ (the total number of distinct pairs of samples of size $n_{1 j}$ and $n_{2 j}$ is 1,000 or less)
- Calculate the sample sum for all possible samples of size $\mathrm{n}_{2 \mathrm{j}}$.
- Rank the sample sums from smallest to largest. Ties are dealt by using average ranks.
- Let R_{0} be the rank of the observed sample sum with respect to all the sample sums.

$$
\alpha=1-\frac{\mathrm{R}_{0}-0.5}{\mathrm{M}_{\mathrm{j}}}
$$

- $M_{j}>1,000$
- Draw a random sample of 1,000 sample sums from the permutation distribution.
- Add the observed sample sum to the list. There are a total of 1001 sample sums. Rank the sample sums from smallest to largest. Ties are dealt by using average ranks.
- Let R_{0} be the rank of the observed sample sum with respect all the sample sums.

$$
\alpha=1-\frac{\mathrm{R}_{0}-0.5}{1001}
$$

Proportion Measure

$$
Z_{\mathrm{j}}=\frac{\mathrm{n}_{\mathrm{j}} \mathrm{a}_{1 \mathrm{j}}-\mathrm{n}_{1 \mathrm{j}} \mathrm{a}_{\mathrm{j}}}{\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{\mathrm{n}_{\mathrm{j}}-1}}}
$$

Rate Measure

$$
Z_{j}=\frac{n_{1 j}-n_{j} q_{j}}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}
$$

D.2.3 Obtain a Truncated Z-Score for each Cell ($\boldsymbol{F}_{\mathrm{j}}$)

$$
\mathrm{Z}_{\mathrm{j}}^{*}=\min \left(0, \mathrm{Z}_{\mathrm{j}}\right)
$$

D.2.4 Calculate the Theoretical Mean and Variance

Calculate the theoretical mean and variance of the truncated statistic under the null hypothesis of parity, $\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ and $\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$. To compensate for the truncation in step 3 , an overall, weighted sum of the $Z_{j}{ }_{j}$ will need to be centered and scaled properly so that the final overall statistic follows a standard normal distribution.

- If $\mathrm{W}_{\mathrm{j}}=0$, then no evidence of favoritism is contained in the cell. The formulas for calculating $\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ and $\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)$ cannot be used. Set both equal to 0 .
- If $\min \left(n_{1 j}, n_{2 j}\right)>6$ for a mean measure, or $\min \left\{a_{1 j}\left(1-\frac{a_{1 j}}{n_{1 j}}\right), a_{2 j}\left(1-\frac{a_{2 j}}{n_{2 j}}\right)\right\}>9$ for a proportion measure, or $\min \left(n_{1 j}, n_{2 j}\right)>15$ and $n_{j} q_{j}\left(1-q_{j}\right)>9$ for a rate measure, then

$$
\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=-\frac{1}{\sqrt{2 \pi}}
$$

and

$$
\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\frac{1}{2}-\frac{1}{2 \pi}
$$

- Otherwise, determine the total number of values for $\mathrm{Z}_{\mathrm{j}}^{*}$. Let Z_{ji} and θ_{j}, denote the values of Z_{j}^{*} and the probabilities of observing each value, respectively.

$$
\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\sum_{\mathrm{i}} \theta_{\mathrm{ji}} \mathrm{Z}_{\mathrm{ji}}
$$

and

$$
\operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)=\sum_{\mathrm{i}} \theta_{\mathrm{ji}} \mathrm{z}_{\mathrm{ji}}^{2}-\left[\mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)\right]^{2}
$$

The actual values of the z's and θ 's depend on the type of measure.

Mean Measure

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{j}}=\min \left(\mathrm{M}_{\mathrm{j}}, 1,000\right), \mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{j}} \\
& \mathrm{z}_{\mathrm{ji}}=\min \left\{0, \Phi^{-1}\left(1-\frac{\mathrm{R}_{\mathrm{i}}-0.5}{\mathrm{~N}_{\mathrm{j}}}\right)\right\} \quad \text { where } \mathrm{R}_{\mathrm{i}} \text { is the rank of sample sum } \mathrm{i} \\
& \theta_{\mathrm{j}}=\frac{1}{\mathrm{~N}_{\mathrm{j}}}
\end{aligned}
$$

Proportion Measure

$$
\begin{aligned}
& z_{\mathrm{ji}}=\min \left\{0, \frac{\mathrm{n}_{\mathrm{j}} \mathrm{i}-\mathrm{n}_{1 \mathrm{j}} \mathrm{a}_{\mathrm{j}}}{\left.\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{\mathrm{n}_{\mathrm{j}}-1}}\right\}, \quad \mathrm{i}=\max \left(0, \mathrm{a}_{\mathrm{j}}-\mathrm{n}_{2 \mathrm{j}}\right), \ldots, \min \left(\mathrm{a}_{\mathrm{j}}, \mathrm{n}_{1 \mathrm{j}}\right)}\right. \\
& \theta_{\mathrm{ji}}=\operatorname{HG}(\mathrm{i})
\end{aligned}
$$

Rate Measure

$$
\begin{aligned}
& \mathrm{z}_{\mathrm{ji}}=\min \left\{0, \frac{\mathrm{i}-\mathrm{n}_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}}{\sqrt{\mathrm{n}_{\mathrm{j}} \mathrm{q}_{\mathrm{j}}\left(1-\mathrm{q}_{\mathrm{j}}\right)}}\right\}, \quad \mathrm{i}=0, \ldots, \mathrm{n}_{\mathrm{j}} \\
& \theta_{\mathrm{ji}}=\mathrm{BN}(\mathrm{i})
\end{aligned}
$$

D.2.5 Calculate the Overall Test Statistic (\mathbf{Z}^{\top})

$$
\mathrm{Z}^{\mathrm{T}}=\frac{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{Z}_{\mathrm{j}}^{*}-\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{E}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)}{\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2} \operatorname{Var}\left(\mathrm{Z}_{\mathrm{j}}^{*} \mid \mathrm{H}_{0}\right)}}
$$

The Balancing Critical Value

There are four key elements of the statistical testing process:

- the null hypothesis, H_{0}, that parity exists between ILEREandUCKFC services
 own customers
- the Truncated Z test statistic, Z^{\top}, and
- a critical value, c

The decision rule ${ }^{1}$ is

- If $Z^{\top}<c$ then accept H_{a}.
- If $Z^{\top} \geq c$ then accept H_{0}.

There are two types of errors possible when using such a decision rule:

- Type I Error: (α)Deciding favoritism exists when there is, in fact, no favoritism.
- Type II Error: (β) Deciding parity exists when there is, in fact, favoritism.

The probabilities of each type of error are:

- Type I Error: $\alpha=\mathrm{P}\left(\mathrm{Z}^{\mathrm{T}}<c \mid \mathrm{H}_{0}\right)$
- Type II Error: $\beta=\mathrm{P}\left(\mathrm{Z}^{\mathrm{T}} \geq c \mid \mathrm{H}_{\mathrm{a}}\right)$

We want a balancing critical value, c_{B}, so that $\alpha=\beta$.
It can be shown that.

$$
c_{B}=\frac{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \mathrm{M}\left(\mathrm{~m}_{\mathrm{j}}, \mathrm{se}_{\mathrm{j}}\right)-\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}} \frac{-1}{\sqrt{2 \pi}}}{\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2} \mathrm{~V}\left(\mathrm{~m}_{\mathrm{j}}, \mathrm{se}_{\mathrm{j}}\right)}+\sqrt{\sum_{\mathrm{j}} \mathrm{~W}_{\mathrm{j}}^{2}\left(\frac{1}{2}-\frac{1}{2 \pi}\right)}}
$$

where

$$
\begin{aligned}
& \mathrm{M}(\mu, \sigma)=\mu \Phi\left(\frac{-\mu}{\sigma}\right)-\sigma \phi\left(\frac{-\mu}{\sigma}\right) \\
& \mathrm{V}(\mu, \sigma)=\left(\mu^{2}+\sigma^{2}\right) \Phi\left(\frac{-\mu}{\sigma}\right)-\mu \sigma \phi\left(\frac{-\mu}{\sigma}\right)-\mathrm{M}(\mu, \sigma)^{2}
\end{aligned}
$$

$\Phi(\cdot)$ is the cumulative standard normal distribution function, $\phi(\cdot)$ is the standard normal density function, and μ and σ are the formal arguments of functions $\mathrm{M}(\cdot, \cdot)$ and $\mathrm{V}(\cdot, \cdot)$.
This formula assumes that Z_{j} is approximately normally distributed within cell j . When the cell sample sizes, $\mathrm{n}_{1 \mathrm{j}}$ and $\mathrm{n}_{2 \mathrm{j}}$, are small this may not be true. It is possible to determine the cell mean and variance under the null hypothesis when the cell sample sizes are small. It is much more difficult to determine these values under the alternative hypothesis. Since the cell weight, W_{i}, will also be small (see calculate
 not contribute much to the weighted sum. Therefore, PheBaboverdrmer pravilesian reasonable approximation to the balancing critica value. JEFF R. DEROUEN
The values of m_{j} and $s e_{j}$ will depend on the type of performancethasasuranch
${ }^{1}$ This decision rule assumes that a negative test statistic indicates opposite is true, then reverse the decision rule.

Mean Measure

For mean measures, one is concerned with two parameters in each cell, namely, the mean and variance. A possible lack of parity may be due to a difference in cell means, and/or a difference in cell variances. One possible set of hypotheses that capture this notion, and take into account the assumption that transaction are identically distributed within cells is:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1 \mathrm{j}}=\mu_{2 \mathrm{j}}, \sigma_{\mathrm{lj}}{ }^{2}=\sigma_{2 \mathrm{j}}{ }^{2} \\
& \mathrm{H}_{\mathrm{a}}: \mu_{2 \mathrm{j}}=\mu_{1 \mathrm{j}}+\delta_{\mathrm{j}} \sigma_{\mathrm{lj}}, \sigma_{2 \mathrm{j}}{ }^{2}=\lambda_{\mathrm{j}} \sigma_{\mathrm{lj}}{ }^{2}
\end{aligned}
$$

Where $\delta_{\mathrm{j}}>0, \lambda_{\mathrm{j}} \geq 1, \mathrm{j}=1, \ldots \mathrm{~L}$, and parameters δ_{j} and λ_{j} correspond to the Delta and Lambda values defined in section 4.1.6 of the Administrative Plan)

Under this form of alternative hypothesis, the cell test statistic Z_{j} has mean and standard error given by

$$
m_{j}=\frac{-\delta_{j}}{\sqrt{\frac{1}{n_{1 j}}+\frac{1}{n_{2 j}}}}
$$

and

$$
s e_{j}=\sqrt{\frac{\lambda_{\mathrm{j}} n_{1 \mathrm{j}}+n_{2 \mathrm{j}}}{n_{1 \mathrm{j}}+n_{2 \mathrm{j}}}}
$$

Proportion Measure

For a proportion measure there is only one parameter of interest in each cell, the proportion of transaction possessing an attribute of interest. A possible lack of parity may be due to a difference in cell proportions. A set of hypotheses that take into account the assumption that transactions are identically distributed within cells while allowing for an analytically tractable solution is:

$\mathrm{H}_{0}:$	$\frac{\mathrm{p}_{2 \mathrm{j}}\left(1-\mathrm{p}_{1 \mathrm{j}}\right)}{\left(1-\mathrm{p}_{2 \mathrm{j}}\right) \mathrm{p}_{1 \mathrm{j}}}=1$	
$\mathrm{H}_{\mathrm{a}}:$	$\frac{\mathrm{p}_{2 \mathrm{j}}\left(1-\mathrm{p}_{1 \mathrm{j}}\right)}{\left(1-\mathrm{p}_{2 \mathrm{j}}\right) \mathrm{p}_{1 \mathrm{j}}}=\psi_{\mathrm{j}}$	$\psi_{\mathrm{j}}>1$ and j
	$=1, \ldots, \mathrm{~L}$.	

Where parameters ψ_{j} corresponds to the Psi va ues deafieen igesectionctombnoftheen Administrative Plan.

JEFF R. DEROUEN
 interest is a missed trouble repair, then an interpletation of tho altornalin himothesis is that a CLEC trouble repair appointment is ψ_{j} an ILEC trouble.

Under this form of alternative hypothesis, the within cell asymptotic mean and variance of $a_{1 j}$ are given by ${ }^{1}$

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{a}_{1 \mathrm{j}}\right)=\mathrm{n}_{\mathrm{j}} \pi_{\mathrm{j}}^{(1)} \\
& \operatorname{var}\left(\mathrm{a}_{1 \mathrm{j}}\right)=\frac{\mathrm{n}_{\mathrm{j}}}{\frac{1}{\pi_{\mathrm{j}}^{(1)}}+\frac{1}{\pi_{\mathrm{j}}^{(2)}}+\frac{1}{\pi_{\mathrm{j}}^{(3)}}+\frac{1}{\pi_{\mathrm{j}}^{(4)}}}
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{\mathrm{j}}^{(1)}=f_{\mathrm{j}}^{(1)}\left(\mathrm{n}_{\mathrm{j}}^{2}+f_{\mathrm{j}}^{(2)}+f_{\mathrm{j}}^{(3)}-f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(2)}=f_{\mathrm{j}}^{(1)}\left(-\mathrm{n}_{\mathrm{j}}^{2}-f_{\mathrm{j}}^{(2)}+f_{\mathrm{j}}^{(3)}+f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(3)}=f_{\mathrm{j}}^{(1)}\left(-\mathrm{n}_{\mathrm{j}}^{2}+f_{\mathrm{j}}^{(2)}-f_{\mathrm{j}}^{(3)}+f_{\mathrm{j}}^{(4)}\right) \\
& \pi_{\mathrm{j}}^{(4)}=f_{\mathrm{j}}^{(1)}\left(\mathrm{n}_{\mathrm{j}}^{2}\left(\frac{2}{\psi_{\mathrm{j}}}-1\right)-f_{\mathrm{j}}^{(2)}-f_{\mathrm{j}}^{(3)}-f_{\mathrm{j}}^{(4)}\right) \\
& f_{\mathrm{j}}^{(1)}=\frac{1}{2 \mathrm{n}_{\mathrm{j}}^{2}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)} \\
& f_{\mathrm{j}}^{(2)}=\mathrm{n}_{\mathrm{j}} \mathrm{n}_{1 \mathrm{j}}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right) \\
& f_{\mathrm{j}}^{(3)}=\mathrm{n}_{\mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\frac{1}{\psi_{\mathrm{j}}}-1\right) \\
& f_{\mathrm{j}}^{(4)}=\sqrt{\mathrm{n}_{\mathrm{j}}^{2}\left[4 \mathrm{n}_{1 \mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)+\left(\mathrm{n}_{\mathrm{j}}+\left(\mathrm{a}_{\mathrm{j}}-\mathrm{n}_{1 \mathrm{j}}\right)\left(\frac{1}{\psi_{\mathrm{j}}}-1\right)\right)^{2}\right]}
\end{aligned}
$$

Recall that the cell test statistic is given by

$$
Z_{j}=\frac{n_{j} a_{1 j}-n_{1 j} a_{j}}{\sqrt{\frac{n_{1 j} n_{2 j} a_{j}\left(n_{j}-a_{j}\right)}{n_{j}-1}}}
$$

Using the equations above, it can be shown that Z_{j} has mean and standard error given by

$$
m_{\mathrm{j}}=\frac{\mathrm{n}_{\mathrm{j}}^{2} \pi_{\mathrm{j}}^{(1)}-\mathrm{n}_{1 \mathrm{j}} \mathrm{a}_{\mathrm{j}}}{\sqrt{\frac{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)}{\mathrm{n}_{\mathrm{j}}-1}}}
$$

and

$$
\mathrm{se}_{\mathrm{j}}=\sqrt{\frac{\mathrm{n}_{\mathrm{j}}^{3}\left(\mathrm{n}_{\mathrm{j}}-1\right)}{\mathrm{n}_{1 \mathrm{j}} \mathrm{n}_{2 \mathrm{j}} \mathrm{a}_{\mathrm{j}}\left(\mathrm{n}_{\mathrm{j}}-\mathrm{a}_{\mathrm{j}}\right)\left(\frac{1}{\pi_{\mathrm{j}}^{(1)}}+\frac{1}{\pi_{\mathrm{j}}^{(2)}}+\frac{1}{\pi_{\mathrm{j}}^{(3)}}+\frac{1}{\pi_{\mathrm{j}}^{()^{)}}}\right)}}
$$

Rate Measure

A rate measure also has only one parameter of interest in each cell, the rate at which a phenomenon is observed relative to a base unit, e.g. the number of troubles per available line. A possible lack of parity may be due to a difference in cell rates. A set of hypotheses that take into account the assumption that transactions are identically distributed within cells is:

$$
\begin{aligned}
& \mathrm{H}_{0}: \mathrm{r}_{1 \mathrm{j}}=\mathrm{r}_{2 \mathrm{j}} \\
& \mathrm{H}_{\mathrm{a}}: \mathrm{r}_{2 \mathrm{j}}=\varepsilon_{\mathrm{j}} \mathrm{r}_{1 \mathrm{j}} \quad \varepsilon_{\mathrm{j}}>1 \text { and } \mathrm{j}=1, \ldots, \mathrm{~L} .
\end{aligned}
$$

Where parameters ε_{j} corresponds to the Epsilon values defined in section 4.1.6 of the Administrative Plan.
Given the total number of ILEC and CLEC transactions in a cell, n_{j}, and the number of base elements, $b_{1 j}$ and $b_{2 j}$, the number of ILEC transaction, $n_{1 j}$, has a binomial distribution from n_{j} trials and a probability of

$$
q_{j}^{*}=\frac{r_{1 j} b_{1 j}}{r_{1 j} b_{1 j}+r_{2 j} b_{2 j}}
$$

Therefore, the mean and variance of $n_{1 j}$, are given by

$$
\begin{aligned}
& E\left(n_{1 j}\right)=n_{j} q_{j}^{*} \\
& \operatorname{var}\left(n_{1 j}\right)=n_{j} q_{j}^{*}\left(1-q_{j}^{*}\right)
\end{aligned}
$$

Under the null hypothesis

$$
q_{\mathrm{j}}^{*}=\mathrm{q}_{\mathrm{j}}=\frac{\mathrm{b}_{1 \mathrm{j}}}{\mathrm{~b}_{\mathrm{j}}}
$$

but under the alternative hypothesis

$$
q_{j}^{*}=q_{j}^{a}=\frac{b_{1 j}}{b_{1 j}+\varepsilon_{j} b_{2 j}}
$$

Recall that the cell test statistic is given by

$$
Z_{j}=\frac{n_{1 j}-n_{j} q_{j}}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}
$$

Using the relationships above, it can be shown that Z_{j} has mean and standard error given by

$$
m_{j}=\frac{n_{j}\left(q_{j}^{a}-q_{j}\right)}{\sqrt{n_{j} q_{j}\left(1-q_{j}\right)}}=\left(1-\varepsilon_{j}\right) \frac{\sqrt{n_{j} b_{1 j} b_{2 j}}}{b_{1 j}+\varepsilon_{j} b_{2 j}}
$$

and

$$
s e_{j}=\sqrt{\frac{q_{j}^{a}\left(1-q_{j}^{a}\right)}{q_{j}\left(1-q_{j}\right)}}=\sqrt{\varepsilon_{j}} \frac{b_{j}}{b_{1 j}+\varepsilon_{j} b_{2 j}}
$$

D.2.6 Determining the Parameters of the Alternative Hypothesis

In this section we have indexed the alternative hypothesis of mean measures by two sets of parameters, λ_{j} and δ_{j} (where λ_{j} and δ_{j} correspond to the Lambda and Delta values defined in section 4.1.6 of the Administrative Plan section). Proportion measures are indexed by parameter ψ_{j} and rate measures by ε_{j} (these parameters correspond to the Psi and Epsilon of section 4.1.6). A major difficulty with this approach is that more than one alternative will be of interest; for example we may consider one alternative in which all the δ_{j} are set to a common non-zero value, and another set of alternatives in each of which just one δ_{j} is non-zero, while all the rest are zero. There are very many other possibilities. Each possibility leads to a single value for the balancing critical value; and each possible critical value corresponds to many sets of alternative hypotheses, for each of which it constitutes the correct balancing value.

The formulas we have presented can be used to evaluate the impact of different choices of the overall critical value. For each putative choice, we can evaluate the set of alternatives for which this is the correct balancing value. While statistical science can be used to evaluate the impact of different choices of these parameters, there is not much that an appeal to statistical principles can offer in directing specific choices. Specific choices are best left to telephony experts. Still, it is possible to comment on some aspects of these choices:
Parameter Choices for λ_{j} - The set of parameters λ_{j} Index alternatyes $k P$ the null hypothesis that arise because there might be greate unpredistabisityFariceariabilitynibsthee delivery of service to a CLEC customer over tha which would reqnageieredenor an otherwise comparable ILEC customer. While concerrs sabout differeple区s/m of service are important, it turns out that the truncated Z testinig forlich recommended here is relatively insensitive to all but very larg, R Listur λ_{j}. Put

Appendix D: Statistical Formulas and Technical Descriptions
another way, reasonable differences in the values chosen here could make very little difference in the balancing points chosen. Therefore, λ_{j} parameters have been set to 1 .
Parameter Choices for δ_{j} - The set of parameters δ_{j} are much more important in the choice of the balancing point than was true for the λ_{j}. The reason for this is that they directly index differences in average service. The truncated Z test is very sensitive to any such differences; hence, even small disagreements among experts in the choice of the δ_{j} could be very important. Sample size matters here too. For example, setting all the δ_{j} to a single value $-\delta_{j}=\delta$ might be fine for tests across individual CLECs where the CLEC customer bases are not too different. Using the same value of δ for the overall state testing does not seem sensible. At the state level we are aggregating over CLECs, so using the same δ as for an individual CLEC would be saying that a "meaningful" degree of disparity is one where the violation is the same (δ) for each CLEC. But the detection of disparity for any component CLEC is important, so the relevant "overall" δ should be smaller.

Parameter Choices for ψ_{j} or ε_{j} - The set of parameters ψ_{j} or ε_{j} are also important in the choice of the balancing point for tests of their respective measures. The reason for this is that they directly index increases in the proportion of service performance. The truncated Z test is sensitive to such increases; but not as sensitive as the case of δ for mean measures. Sample size matters here too. As with mean measures, using the same value of ψ or ε for the overall state testing does not seem sensible.

The bottom line here is that beyond a few general considerations, like those given above, a principled approach to the choice of the alternative hypotheses to guard against must come from elsewhere.

D.2.7 Decision Process

Once Z^{\top} has been calculated, it is compared to the balancing critical value to determine if the ILEC is favoring its own customers over a CLEC's customers.

KENTUCKY
PUBLIC SERVICE COMMISSION
JEFF R. DEROUEN
EXECUTIVE DIRECTOR
TARIFF BRANCH
Bunt firtlyy
EFFECTIVE
$3 / 1 / 2011$
PURSUANT TO 807 KAR 5:011 SECTION 9 (1)

Appendix E: AT\&T SEEM Remedy Calculation Procedures

E. 1 AT\&T SEEM Remedy Procedure

E.1.1 Tier-1 Calculation For Retail Analogs
 DETERMINE IF AN INDIVIDUAL CLEC FAILS A TIER-1 SUBMETRIC

1. Tier- 1 is triggered by a monthly failure of any Tier- 1 Remedy Plan submetric.
2. Calculate the overall test statistic for a CLEC (CLEC1); Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1}$ (per Statistical Methodology).
3. Calculate the balancing critical value (Example, ${ }^{c} \mathrm{~B}_{\text {CLEC1 }}$) that is associated with the alternative hypothesis (for fixed parameters λ, δ, ψ, or ε) for that CLEC.
4. If the overall test statistic is equal to or above the balancing critical value, stop here. That is, if ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLEC } 1} \leq \mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}$, stop here. Otherwise, go to step 5.

CALCULATE REMEDY PAYMENT FOR CORRECTION OF TEST STATISTIC TO THE BALANCING CRITICAL VALUE

5. Select the cell with the most negative Z-Score (let $\mathrm{i}=1, \ldots, \mathrm{I}$ with $\mathrm{i}=1$ having the most negative Z-Score , $\mathrm{i}=2$ having next most negative Z-Score, etc. and with $\mathrm{i}=\mathrm{I}$ when the criterion in step 7 is fulfilled.) and set its Z-Score to zero ($\mathrm{z}_{\text {CLEC } 1, \mathrm{i}}=0$).
6. Recalculate the overall test statistic for that CLEC with the adjusted data; Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$ (per Statistical Methodology).
7. If the new overall test statistic is equal to or above the balancing critical value, that is, if ${ }^{c} \mathrm{~B}_{\text {Clecı }}<=\mathrm{z}^{\mathrm{T}}{ }_{\text {CLECL }}{ }^{*}$, go to step 8. Otherwise, repeat steps $5-6$ letting $\mathrm{i}=\mathrm{i}+1$.
8. Calculate the Total Affected Volume (TAV) by summing the Total Impacted Volumes (TIV) of each cell whose Z-Score was reset to zero except the last cell changed. The impacted volume for the last cell changed should be interpolated by $\operatorname{TIV}_{\text {CLEC } 1,1,1 \mathrm{NT}}=\left({ }^{\mathrm{C}} \mathrm{B}_{\text {CLEC1 }}-\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1, \mathrm{I}-1}{ }^{*}\right) /\left(\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1,1^{*}}^{*}-\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC } 1, \mathrm{I}-1}{ }^{*}\right) \times \mathrm{TIV}_{\text {CLEC } 1, \mathrm{I}}$. The result should be rounded up to the next positive integer and added to $\mathrm{TAV}_{\text {CLEC1. }}$. That is, $\operatorname{TAV}_{\text {CLEC } 1}=\operatorname{TIV}_{\text {CLEC } 1,1}+\operatorname{TIV}_{\text {CLEC } 1,2}+\ldots+\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}-1}+\operatorname{TIV}_{\text {CLEC } 1, \mathrm{IINT}}$. Note that if $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}=1$ then $\operatorname{TIV}_{\text {CLECLI,IINT }}=1$ and the interpolation step can be omitted. Any transactions that cause the overall test statistic to be between the BCKEANLLEKO/will be included in the TIV for transactions between the BCV arflefth SERVICE COMMISSION
9. Calculate the below BCV portion of the payment th CLEC1 by deffpripeneldelt of step $8\left(\mathrm{TAV}_{\text {CLEC1 }}\right)$ by the appropriate dollar amoult from the FEXECUTIVEDTRECTOR
 from Table 1: Fee Schedule for Tier-1 Per Transadtion Fee Detc. (uunt Hirtly ${ }^{\text {dix A) }}$
multiplied by the appropriate factor from section 4.3.1.4. This factor is $3 / 2$ if the CLEC aggregate performance passes and 3 if the CLEC aggregate performance fails.

CALCULATE REMEDY PAYMENT FOR CORRECTION OF TEST STATISTIC TO ZERO

10. If the current overall adjusted test statistic (calculated in step 6) is equal to or above zero, that is, if $0<=\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$ for $\mathrm{i}=\mathrm{I}$, then go to step 14. Otherwise, go to step 11 .
11. Select the cell with the most negative remaining z-value (let $\mathrm{i}=\mathrm{I}+1, \ldots$, J with $\mathrm{i}=1+1$ having the most negative z-value, $\mathrm{i}=\mathrm{I}+2$ having next most negative z -value, etc. and with $\mathrm{i}=\mathrm{J}$ when the criterion in step 13 is fulfilled.) and set its z -value to zero ($\mathrm{z}_{\text {CLEC } 1, \mathrm{i}}=0$).
12. Recalculate the overall test statistic for that CLEC with the adjusted data; Example, $\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$ (Per Statistical Methodology).
13. If the new overall test statistic is equal to or above zero, that is, if ${ }^{\mathrm{c}} \mathrm{B}_{\text {CLEC1 }}<=\mathrm{z}^{\mathrm{T}}{ }_{\text {CLEC1 }}{ }^{*}$, go to step 14. Otherwise, repeat steps $11-12$ letting $\mathrm{i}=\mathrm{i}+1$.
14. Calculate the Total Affected Volume (TAV0) by summing the Total Impacted Volumes (TIV0) of each cell whose z-value was reset to zero except the last cell changed. The affected volume for the last cell changed should be interpolated by
 The result should be rounded up to the next positive integer and added to TAV0 $0_{\text {CLEC1 }}$. That is, $\mathrm{TAV}_{\text {CLEC } 1}=\left(\mathrm{TIV}_{\text {CLEC } 1, \mathrm{I}}-\mathrm{TIV}_{\text {CLEC } 1, \mathrm{I}, \mathrm{NT}}\right)+\mathrm{TIV} 0_{\text {CLEC } 1, \mathrm{II}+1}+\mathrm{TIV} 0_{\text {CLEC } 1, I+2}+\ldots+$ $\left.T I V 0_{\text {CLEC } 1, \mathrm{~J}-1}+\mathrm{TIV}_{\text {CLEC } 1, \mathrm{JINT}}\right)$. Note that if $\operatorname{TIV} 0_{\text {CLEC } 1, \mathrm{~J}}=1$ then $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{JINT}}=1$ and the interpolation step can be omitted. Also, $\operatorname{TIV}_{\mathrm{CLEC}, \mathrm{I}}-\operatorname{TIV}_{\text {CLECl,IINT }}$ is the remaining transactions from $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}$ that were not used in step 8 and if $\operatorname{TIV}_{\text {CLEC } 1, \mathrm{I}}=\mathrm{TIV}_{\text {CLEC } 1, \mathrm{IINT}}$ then $\mathrm{TAV} 0_{\text {CLEC } 1}=0$.
15. Calculate the 0 to BCV portion of the payment to CLEC1 by multiplying the result of step 14 (TAV0 $\left.0_{\text {CLECI }}\right)$ by the appropriate dollar amount from the fee schedule. Thus, CLEC_{0} payment $=\mathrm{TAV} 0_{\text {CLEC } 1} * \$ \$$ from Fee Schedule. Here the fee should be derived from Table 1: Fee Schedule for Tier-1 Per Transaction Fee Determination (Appendix A) multiplied by the appropriate factor from section 4.3.1.4. This factor is $1 / 3$ if the CLEC aggregate performance passes and $2 / 3$ if the CLEC aggregate performance fails.

CALCULATE TOTAL REMEDY PAYMENT FOR CLEC1

16. The total remedy payment for CLEC1 is found by adding the results from step 9 to the results from step 15 . That is $\mathrm{CLEC1}_{\text {Total }}$ payment $=\mathrm{CLEC1}_{\text {BCv }}$ payment $+\mathrm{CLEC1}_{0}$ payment.

at\&t

Appendix E: AT\&T SEEM Remedy Calculation Procedures
E.1.2 Example: CLEC1 Percent Repeat Customer Troubles Within 30 Days (PRT) for Resale (DSGN).

```
Submeasure Category = Provisioning - Resale
Failure Month = Month 1
CLEC Aggregate Result = Failed
```

	n_{1}	n_{c}	I_{c}	$\mathbf{z}^{\top}{ }_{\text {cLEC } 1}$	${ }^{\text {c }} \mathbf{B}_{\text {CLEC } 1}$		Order Zeroed Out (I/J)	$\begin{gathered} \text { TAV } \\ (<\text { BCV }) \end{gathered}$	TAVO (0 to BCV)
State	312	27	18	-4.10	-1.22				
Cell				$\mathrm{z}_{\text {CLEC } 1, \mathrm{i}}$	RANK	$\mathrm{z}^{\mathbf{T}}$ CLEC1 ${ }^{*}$			
1		1	0	0.75					
2		4	2	-0.69	8				
3		3	3	-1.76	3	$-0.65^{\text {s }}$	3	2°	1
4		1	0	0.67					
5		4	3	-1.45	5	$0.80^{\Delta \Delta}$	5		1^{00}
6		3	3	-3.45	1	-2.46	1	3	
7		2	2	-1.81	2	-1.60	2	2	
8		3	2	-1.09	6				
9		1	1	-1.65	4	-0.13	4		1
10		2	1	-0.84	7				
11		1	0	0.62					
12		2	1	-0.40	9				
Total			18					7	3

${ }^{4}$ Note that after making $z_{C L E C 1, I}=0$, the overall $z^{\top}{ }_{C L E C 1}{ }^{*}=-0.65$ is greater than the balancing critical value ${ }^{{ }^{C}} \mathbf{B}_{\text {CLEC } 1}=-1.22$.
${ }^{\Delta \Delta}$ Note that after making $Z_{\text {CLEC } 1, \mathrm{~J}}=0$, the overall $\mathrm{z}^{\top}{ }^{\text {CLEC } 1}{ }^{*}=0.80$ is greater than zero.
${ }^{\circ}$ For cell\#3 the TAV would be calculated with $((-1.22)-(-1.60)) /((-0.65)-(-1.60)) \times 3$ $=1.2$ which is rounded up to 2 transactions.
 0.56 which is rounded up to 1 transaction.

JEFF R. DEROUEN
Remedy payment for CLEC1 $1_{\text {bcv }}$ payment is (7 units) * (\$40 when the CLEC aggregate performance fails Remedy paymerntif ${ }^{2}{ }^{\circ} \mathrm{CLEC} 1_{0}$ payment is (3 units) * (\$40/unit) * (2/3 factor)
performance fails. The total remedy payment is CLEO $_{\text {TOTAL }}$ payment $=\$ 840+\$ 80=$ $\$ 920$.

E. 2 Tier-1 Calculation For Benchmarks

1. For each CLEC with five or more observations, calculate monthly performance results for the State.
2. CLEC having observations (sample sizes) between 5 and the large sample threshold L will use benchmark adjustment calculations described below.
The only exception will be for Collocation Percent Missed Due Dates.
a. Large sample threshold is defined as $L=5 /(B \times(1-B))$, rounded to the closest larger integer, where B is the benchmark. Large sample thresholds for some values of benchmarks are shown in the table below.

Benchmark B	Large Sample Threshold L
90%	56
95%	106
96.5%	149

b. The Equivalent Minimal Benchmark for sample size $\mathrm{n}=5, \mathrm{~EB}(5)$ is based on the smallest number of failures $\mathrm{k} \leq \mathrm{n}$, for which the cumulative binomial distribution $\operatorname{CBN}(\mathrm{k}, \mathrm{n}, \mathrm{B})$ exceeds 5%. The failure allowance is at least 1 for small samples.

Nominal Benchmark	Equivalent Minimal Benchmark: EB(5)
90%	60%
95%	80%
96.5%	80%

c. For any CLEC sample size n between 5 and L, the Equivalent Benchmark EB(n) is calculated so that the adjustment percent decreases linearly from $\mathrm{EB}(5)$ for $\mathrm{n}=5$ to 0 for $\mathrm{n}=\mathrm{L}$, resulting in the following formula:

$$
\mathrm{EB}(\mathrm{n})=\mathrm{B}-(\mathrm{B}-\mathrm{EB}(5)) \times(\mathrm{L}-\mathrm{n}) /(\mathrm{L}-5) .
$$

d. Effective Benchmark is equal to the nominal Benchmark for large Equivalent Benchmark for small samples. PUBLIC SERVICE COMMISSION

3. If the percentage (or equivalent percentage for small samples) meets the benchmark standard, no remedies are required. Otherwise, go to step 4.
4. Determine the Volume Proportion by taking the difference between the benchmark and the actual performance result.
5. Calculate the CLEC's Total Affected Volume (TAV) by multiplying the Volume Proportion from step 4 by the Total Impacted CLEC Volume.
6. Calculate the payment to CLEC by multiplying the result of step 5 by the appropriate dollar amount from the fee schedule (Appendix A, Table 1) times the appropriate multiplier (section 4.3.1.5). That is,
CLEC's payment = (CLEC's Total Affected Volume x \$ from Fee Schedule * multiplier). For the example that follows, fee amounts are based on an aggregate failure.

E.2.1 Example: CLEC Percent Missed Due Dates for Collocations
 Submeasure Category = Collocation
 Failure Month = Month 1
 CLEC Aggregate Result = Failed

	$\mathbf{n}_{\mathbf{c}}$	Benchmark	PMDD $_{\mathbf{c}}$	Volume Proportion	Affected Volume	Fee Schedule	Fee Multiplier	Payout
State	600	$\geq 95 \%$ On Time	92%	.03	18			

Payout for CLEC is (18 units) * (\$3165/unit) * (3 factor) $=\$ 170,910$.

E. 3 Tier-1 Calculation For Benchmarks (In The Form Of A Target)

1. For each CLEC with five or more observations calculate monthly performance results for the State.
2. CLEC having observations (sample sizes) between 5 and large sample threshold L will use small sample adjustments as described above.
3. Calculate the interval distribution based on the same data set used in step 1 .
4. If the 'percent within' (or equivalent percentage for small samples) meets the benchmark standard, no remedies are required. Otherwise, go to step 5.
5. Determine the Volume Proportion by taking the difference between benchmark and the actual performance result.
6. Calculate the Total Affected Volume by multiplyipg the volume Pronertiontrmm step 5 by the Total CLEC Volume. PUBLIC SERVICE COMMISSION
7. Calculate the payment to CLEC by multiplying thy result of steporpy hoqequopeiat dollar amount from the fee schedule. That is, CLEC's paymerixECLECDESTBFA Volume x $\$ \$$ from Fee Schedule x multiplier. For the example that ${ }^{\top}$ fiflow CLEC aggregate failure.

at\&t

Appendix E: AT\&T SEEM Remedy Calculation Procedures

E.3.1 Example: CLEC Reject Interval - Fully Mechanized

Submeasure Category = Ordering
Failure Month = Month 1
CLEC Aggregate Result = Failed

	$\mathbf{n}_{\mathbf{c}}$	Benchmark	Reject Interval	Volume Proportion	Affected Volume	Fee Schedule	Fee Multiplier	Payout
State	600	$97 \%<=1$ hour	$95 \%<=$ 1 hour	.02	12			

Payout for CLEC is (12 units) * (\$20/unit) * (2.5 factor) = \$600

E. 4 Regional Coefficients

This section describes the method of calculating regional coefficients.

E.4.1 [AKC]

- Acknowledgement Completeness (AKC_XML Gateway)
- Regional Coefficient Formula (Tier-1)
- Coefficient $=(\mathrm{A}+\mathrm{B}) /(\mathrm{C}+\mathrm{D})$ where:
- A = number of valid FOC transactions of the CLEC in the state (fully \& partially mechanized)
- B = number of valid RI transactions of the CLEC in the state (fully \& partially mechanized)
- \quad = total valid FOC transactions of the CLEC in the region (fully \& partially mechanized)
- $\quad \mathrm{D}=$ total valid RI transactions of the CLEC in the region (fully \& partially mechanized)

E.4.2 [FT]

- Percent Flow Through CLEC Aggregate - Residence (PFT-RES)
- Percent Flow Through CLEC Aggregate - Business (PFT- BUS)
- Percent Flow Through CLEC Aggregate - UNE-L (includes UNE-L with LNP)
- Percent Flow Through CLEC Aggregate - LNP (PFT-LNP)
- Regional Coefficient Formula (Tier-1)
- Coefficient = A / B where:
- $A=$ number of valid FOC transaction s of the CLEC inktred mechanized)
- $B=$ total valid FOC transactions of th mechanized)

E.4.3 [SOM]

- Service Order Accuracy [SOA]
- Regional Coefficient Formula (Tier-1)
- Coefficient = A / B where:
- $A=$ number of valid SOA orders of the CLEC in the state;
- $\quad B=$ total valid SOA orders of the CLEC in the region.

Appendix F: AT\&T's Policy on Reposting of Performance Data and Recalculation of SEEM Payments

AT\&T will be required to repost performance data as reflected in the Service Quality Measurement (SQM) reports and recalculate Self-Effectuating Enforcement Mechanism (SEEM) payments, to the extent technically feasible, under the following circumstances:

1. Those SQM measures included in a state's specific SQM plan with corresponding submetrics are subject to reposting. A notice will be placed on the AT\&T performance measurement website advising CLECs when reposted data is available.
2. SQM Performance sub-metric calculations that result in a shift in the statewide aggregate performance from an "in parity" condition to an "out of parity" condition will be available for reposting.
3. SQM Performance sub-metric calculations with benchmarks where statewide aggregate performance is in an "out of parity" condition will be available for reposting whenever there is a $>=2 \%$ decline in AT\&T's performance at the sub-metric level.
4. SQM Performance sub-metric calculations with retail analogues that are in an "out of parity" condition will be available for reposting whenever there is a degradation in performance as shown by an adverse change of $>=.5$ in the Z-Score at the sub-metric level.
5. Any data recalculations that reflect an improvement in AT\&T's performance will be reposted at AT\&T's discretion.
6. SQM Performance data will be reposted for a maximum of three months in arrears from implementation of the change of programming request requirement (RQ) which corrects a detected error. RQs shall not be unreasonably delayed after the date the error is detected. As an example, an error is discovered during the analysis of the May data month peformance that triggers a reposting, but the RQ correcting the error is implemented in the calendar month of July with the June data month performance reports, AT\&T will correct the data beginning with the month of the RQ implementation (July), which would be for the June data month performance reports, and will repost the data month performance reports for the three months preceding data month performance reports - May, April, and March.
7. When updated SQM performance data has been reposted or when a payment error has been discovered, AT\&T will recalculate applicable SEEM paymen起, Wherey technically feasible, for a maximum of three months in arrears from datt pf detection.CBepalsolated SEEM payments due to reposted SQM data will be made for thefanempobts that the
 due to an error will be determined in the same manrer previously deasariberd fer the SQM. For example, should an error be discovered for the data month $c^{\text {f }}$. $\hat{N}^{\top+\cdots}$ ill correct data for the three preceding months - May, April, and
8. Any adjustments for underpayment of Tier-1 calculated remedies resulting from the application of this policy will be made consistent with the terms of the state-specific SEEM plan, including the payment of interest. Any adjustments for overpayment of Tier-1 remedies will be made at AT\&T's discretion.
9. Any adjustments for underpayments resulting from application of this policy will be made in the next month's payment cycle after the recalculation is made. The final current month reports will reflect the transmitted dollars, including adjustments for prior months where applicable. Questions regarding the adjustments should be made in accordance with the normal process used to address CLEC questions related to SEEM payments.
When a CLEC believes that an error in its specific data requires reposting where the above statewide thresholds have not been met, the CLEC is responsible for identifying such issues and requesting AT\&T to repost the data. Any failure to repost inaccurate data should be brought to the attention of the Commission for resolution if it is estimated that the thresholds described in items 3 or 4 have been met at the CLEC-specific level.

Determination of when Reposting Policy Applies

As part of the Change Notification Process, AT\&T performs an analysis of impacts that are proposed to be made to performance measurement code. These impacts are used to identify changes to its reported SQM results.
To determine this impact, AT\&T performs a query of the data warehouse to identify those records that would be impacted by the proposed change. Once the number of records is identified, the measurement is recalculated to determine the impact. This is the general framework for analysis - the specific steps used to evaluate the impact will vary with the issue being analyzed. However, the following example may assist in understanding:
Assume that service orders were erroneously being included in a particular product disaggregation for Percent Missed Installation Appointments. They should have been in another product disaggregation. Further, assume that the number of records erroneously included is 110 records out of a total of 86,000 . In this example, the numerator and denominator would both be reduced by 110 records and the Z-Score would be recalculated. If the amount of the change was sufficient to meet criteria 2, 4, or 5 above, the Reposting policy will be invoked.

